Generalized conditional symmetries of evolution equations
نویسندگان
چکیده
منابع مشابه
On time-dependent symmetries and formal symmetries of evolution equations
We present the explicit formulae, describing the structure of symmetries and formal symmetries of any scalar (1+1)-dimensional evolution equation. Using these results, the formulae for the leading terms of commutators of two symmetries and two formal symmetries are found. The generalization of these results to the case of system of evolution equations is also discussed.
متن کاملNonlocal Symmetries of Systems of Evolution Equations
We prove that any potential symmetry of a system of evolution equations reduces to a Lie symmetry through a nonlocal transformation of variables. Based on this fact is our method of group classification of potential symmetries of systems of evolution equations having non-trivial Lie symmetry. Next, we modify the above method to generate more general nonlocal symmetries, which yields a purely al...
متن کاملHigher Conditional Symmetries and Reduction of Initial Value Problems for Nonlinear Evolution Equations
We prove that the presence of higher conditional symmetry is the necessary and sufficient condition for reduction of an arbitrary evolution equation in two variables to a system of ordinary differential equations. Furthermore, we give the sufficient condition for an initial value problem for an evolution equation to be reducible to a Cauchy problem for a system of ordinary differential equation...
متن کاملOn symmetries of KdV-like evolution equations
It is well known that provided scalar (1+1)-dimensional evolution equation possesses the infinitedimensional commutative Lie algebra of time-independent non-classical symmetries, it is either linearizable or integrable via inverse scattering transform [1, 2]. The standard way to prove the existence of such algebra is to construct the recursion operator [2]. But Fuchssteiner [3] suggested an alt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2011
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2011.01.027